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We present observations of the development of nonlinear surface gravity-wave 
groups. We calculate the amplitude and phase modulations using Hilbert-transform 
techniques. With increasing propagation distance and wave steepness, the phase 
modulation develops local phase reversals whose locations correspond to amplitude 
minima or nodes. The concomitant frequency modulation develops jumps or 
discontinuities. The observations are compared with recent similar results for 
wavetrains. The observations are modelled numerically using the cubic nonlinear 
Schrodinger equation. The motivation is twofold : to examine quantitatively the 
evolution of phase as well as amplitude modulation and to test the inviscid predictions 
for the asymptotic behaviour of groups versus long-time observations. Although 
dissipation rules out recurrence, there is a, long-time coherence of the groups. The 
phase modulation is found to distinguish between dispersive and soliton behaviour. 

1. Introduction 
This paper examines the long-time evolution of nonlinear surface gravity-wave 

groups. Observations of the propagation of groups of waves of fixed frequency and 
amplitude were made in an unusually long wave channel. The purpose of the 
observations was twofold : to examine quantitatively the evolution of the amplitude 
and phase modulations and to test the predictions of weakly nonlinear wave theory 
(cubic Schrodinger equation) for the asymptotic behaviour of wave groups. 

The experiments were carried out with the cooperation of Dr M.-Y. Su of NORDA. 
He has described the qualitative evolution of these wave groups (Su 1982). However, 
since the early work of Feir (1967) there has not been a study that has calculated 
the phase and frequency modulations of wave groups, in part owing to lack of a 
technique with sufficient resolution. We here apply a Hilbert-transform method used 
successfully by Melville (1983) on wavetrains. 

We use the cubic nonlinear Schrodinger (NLS) equation to predict and model the 
experimental observations. There are two main differences between our use of this 
model and that of previous work. First, we specify phase as well as amplitude 
modulation as an initial condition and then compare the subsequent amplitude and 
phase evolutions with the observations. The initial phase specification does not appear 
to be crucial for narrow-banded wave-group evolution since the phase is basically 
uniform. The interesting result is the subsequent evolution; the phase does not remain 
uniform but exhibits a modulation that provides a clearer indication of the type of 

t Present address : College of Oceanography; Oregon State University, Corvallis, Oregon 97331. 
$ Present address: NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771. 



338 T .  K .  Chereskin and E.  Mollo-Christensen 

nonlinear interaction that occurs than can be seen from amplitude modulatioii alone. 
Most previous work examines only the amplitude modulation and ignores the phase. 

Secondly, because the observations were made in an unusually long wave channel, 
they include the cumulative effect of dissipation on the long-time evolution. Previous 
comparison between the NLS model and observations was not for very long evolution. 
In  a study of wavetrains Lake et al. (1977) attempt to achieve a longer effective 
propagation distance by forcing larger-amplitude initial sidebands. The effect of 
dissipation on such a wavetrain differs from that on a wavetrain with an initially 
smaller-amplitude sideband disturbance that has evolved for longer. 

The prediction of the inviscid theory for these wave groups indicates the possibility 
of a bound state of solitons, with recurrent behaviour and long-time coherence for 
wave groups (Zakharov & Shabat 1972; Satsuma & Yajima 1974). Obviously, exact 
recurrence cannot occur if dissipation i s  present. However, if the timescale on which 
dissipation acts is long enough, then perhaps a quasi-recurrence is possible. Long-time 
observations are thus needed to observe the timescale on which dissipation acts and 
to test the predictions of inviscid theory. Dissipation is included in the model in a 
rather crude form, but one which nevertheless gives good comparison with 
observation. 

2. Experiments 
The experiments were very simple in nature : constant-amplitude single-frequency 

wave groups were generated using a plunger-type wavemaker. The steepness ak 
varied from weak (ak = 0.03) to  moderate (ak = 0.16) nonlinearity. Three group 
lengths were used: 10, 15 and 25 waves per group. We use group length to  mean group 
duration or the number of waves a t  one place; the actual group length is half this 
number of waves. 

The experiments were made in an outdoor wave channel in Bay St Louis, Missis- 
sippi. The horizontal dimensions of the channel were 3.66 m x 137.2 m. The sides were 
constructed of plywood, and the bottom was mown grass. The water depth was 72 cm. 
The values of kh in these experiments ranged from 2 to  5, which places them 
marginally a t  the deep-water limit. The rough bottom acts to increase dissipation 
above that of a smooth one. However, Su (1982) has repeated the experiments in a 
deeper (4 x ) indoor channel with a smooth bottom and has found the same qualitative 
evolution that we see here. 

The wavemaker used is of plunger-type with a hyperbolic forward face. The period 
of the wavemaker is measured a t  the drive shaft. For these experiments the 
measurements from 18 wave-height sensors, the wind velocity and the wavemaker 
period were all recorded on magnetic tape. The experiments were made under still 
wind conditions. The wave-height sensors were of capacitance type. They were 
calibrated by raising and lowering them a fixed distance. The sensors were placed 
along the centreline of the channel, and measurements were made at the following 
fetches (distance in metres): 6.1, 15.2, 30.5, 45.7, 61.1, 76.2, 91.4, 106.7, 121.9 and 
137.2. Most locations had wave-gauge pairs separated by 0.30 m (roughly one 
quarter-wavelength). The loc*ations of the wave gauge pairs were 6.1,30.5,61 .l, 91.4, 
106.7, 121.9 and 137.2. In  addition, a third wave gauge at 121.9 was placed near the 
sidewall as a check that three-dimensional effects were negligible. The pairs were used 
to determine the wavenumber. 
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Experiment 

78 
79 
80 

75 
76 
77 

86 
87 
88 

61 
62 
63 

21 
22 
23 

Nw 
10 
15 
25 

10 
15 
25 

10 
15 
25 

10 
15 
25 

10 
15 
25 

0.03 0.80 
0.03 0.80 
0.03 0.80 

0.07 0.97 
0.07 0.96 
0.07 0.96 

0.10 0.96 
0.10 0.96 
0.10 0.96 

0.025 
0.025 
0.025 

0.036 
0.036 
0.036 

0.037 
0.037 
0.037 

0.80 0 
0.80 0 
0.80 0 

0.97 0 
0.96 0 
0.96 0 

0.95 0.01 
0.95 0.01 
0.94 0.02 

0.15 1.20 0.060 1.06 0.12 
0.15 1.20 0.060 1.04 0.13 
0.15 1.21 0.060 1.04 0.14 

0.16 1.21 0.050 1.05 0.13 
0.16 1.21 0.050 1.02 0.17 
0.16 1.21 0.050 1.01 0.16 

TABLE 1. Experimental parameters 

los a 
(cm-') 

6 
7 
8 

6 
6 
5 

7 
7 
6 

4 
4 
5 

4 
6 
4 

3. Observations 
In comparison with continuous wavetrains, the frequency downshifting observed 

in wavetrains (Lake et al. 1977; Melville 1982) and in wind waves (Mollo-Christensen 
& Ramamonjiarisoa 1982) seems also to occur for isolated groups in the absence of 
wind. A weakly nonlinear wavetrain is modulationally unstable to sideband pertur- 
bations (Benjamin & Feir 1967). The wavetrain is observed to modulate with fetch, 
then demodulate and reform into a nearly uniform wavetrain, but a t  slightly lower 
frequency (Lake et al. 1977). 

For groups of sufficient steepness (ak 2 0. lo), wavepackets also exhibit this 
phenomenon of frequency downshifting. In  brief, the downshifting in wave groups 
seems also to result from a modulational instability. Initially, sidebands to the 
fundamental are observed to grow. After a time the lower sideband grows at a faster 
rate than Che upper sideband. The modulation is strongest when the lower Sideband 
is still smaller than the fundamental peak. Eventually the lower sideband exceeds 
the fundamental. At  this point, the time development indicates that the modulation 
has sorted itself into a succession of quasi-permanent solitons with larger-amplitude 
lower-frequency groups leading. The downshifting process seems irreversible. A 
distinction to be made between wave groups and wavetrains is that, although the peak 
downshifts, not all the groups have the downshifted frequency (Su 1982). 

The Benjamin-Feir analysis, a linear theory valid for the initial growth, predicts 
the most unstable sideband frequencyf, to be linearly related to the wave steepness 
(df = Ifi  -fo l/fo = ak) .  The long-term spectral evolution indicates good agreement 
with the Benjamin-Feir prediction even for moderate nonlinearity and long-term 
group development. Table 1 summarizes the frequency downshift for various initial 
wave steepnesses and group lengths. We examine the spectral and the modulational 
development for an individual experiment in greater detail below. 
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0.60 1.00 1.40 0.60 1.00 1.40 1.80 

FIGURE 1. Maximum-entropy method (MEM) spectral evolution for a jpoup of 25 waves of initial 
steepness ak = 0.16. Notice the appearance of sidebands at 30.5 m ; lower already exceeds upper. 
At 61.1 m the lower equals the fundamental. At further fetch there is a merging of the lower 
sideband and fundamental; the new peak frequency is downshifted (16%). There is also a growth 
of the continuous spectrum. 

3.1. Spectra 

Figure 1 shows the spectral evolution of a group of 25 waves with initial steepness 
ak = 0.16 and carrier frequency fo = 1.2 Hz. Although this is a rather long group, it 
is a relatively short time series. Fourier analysis reveals the appearance of new 
frequencies; however, for short time series (period T) it  does not give very good peak 
resolution ( 1 /T) . 

Here we present maximum-entropy method (MEM) spectral estimates. If auto- 
regression is a good model for the data, the MEM estimator yields improved peak 
resolution and spectral fidelity over traditional spectral estimators (Kay & Marple 
1981). The data are first bandpassed (in Fourier space) on a 1 Hz frequency interval 
centred onto. The bandpass is used to achieve very good peak resolution close to the 
carrier. In experiments where downshifting occurred, the width of the interval always 
included the downshifted frequency. This was checked by comparison with spectra 
of unfiltered data from the furthest wave observation in the channel. 
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The initial peak (at 6.1 m) in figure 1 is quite narrow and is located a t  1.2 Hz. Figure 
2 shows the time development and the modulation. In figure 2(a) we see that the 
group is slightly modulated at either end. The strongest modulation occurs whilst 
the sideband perturbations to the carrier are still growing (from 30.5 to 61.1 m). In 
the time development we see small-amplitude leading low-frequency waves and 
trailing high-frequency waves disperse away from the central group as it propagates. 
Once the downshifting occurs (between 106.7 and 137.2 m), the modulation is weaker, 
and the initial pulse is sorted out into a succession of 4-5 envelope solitons of 
increasing frequency and decreasing amplitude. The downshifted frequency is 
1.01 Hz. The splitting is still incomplete at 137.2 m. Experiments with shorter pulses 
and smaller steepnesses show that smaller initial disturbances evolve more quickly, 
in qualitative agreement with theoretical prediction (Zakharov t Shabat 1972). 

3.2. Modulations 
We assume the following model for our wavegauge observations: 

dz,, t )  = Re {a(% t )  exp [ibo t + 4% t ) ) I l ,  (3.1) 

where g ( q ,  t )  is the measurement of surface displacement at fixed location z1 and oo 
is the initial (radian) carrier frequency. This models the surface displacement signal 
as the product of a rapidly varying carrier wave 

exp W O  t)I (3-2) 

(3.3) 

and a slowly varying complex envelope 

4% t )  exp [iw% t ) I .  

The amplitude modulation a ( q ,  t )  and the phase modulation 8(z,, t )  are obtained 
using the Hilbert transform of the signal. The frequency modulation is defined as 

The transform method and its assumptions are documented in Appendix A. The data 
are bandpassed (the same as for the spectra) on a 1 Hz band centred on the carrier 
frequency. This is done to achieve a smooth envelope ; higher-frequency contributions 
are not what we consider as part of the slow modulation of the carrier. However, as 
will be seen below, we note frequencies in the frequency-modulation time series that 
are outside the passband. These are instantaneous frequencies, i.e. the filtering in 
Fourier space will not remove any high-frequency fluctuations in the time series that 
occur over one or two wave periods (typically less). 

FIGURE 2. Concomitant amplitude, phase and frequency modulations for a group of 25 waves of 
initial steepness a& = 0.16 at 6 successive fetches. Time origins are arbitrary. (a) Modulations at 
6.1 m. Amplitude modulation is superimposed over the group. Notice the excellent fit. The phase 
is unwrapped and is uniform within the group. (a) Modulations at 30.5 m. Within the group 2 weak 
jumps in frequency corresponding to local reversals in phase located at minima in amplitude 
modulation are shown. (c) An expanded view of the first phase reversal (53.7 s) within the group 
at 30.5 m. The magnitude of the phase change is 2 rad. The amplitude modulation is at a minimum, 
but is still positive-definite. (d)-(f) Modulations at 61.1, 91.4, and 106.7 m. Notice frequency 
modulation jumps and phase reversals where amplitude modulation minima occur. (8)  Expanded 
view of phase reversal occurring a t  52.4 s in the time series a t  106.7 m. The magnitude is 
approximately 2.3 rad and the amplitude modulation goes to zero. This looks very much like a 
' crest-pairing ' event in which crests merge and the frequency downshifts. (h) Modulations at 137.2 m. 
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Figure 2 shows the amplitude, phase and frequency modulations a t  six different 
wavc-gauge locations. The amplitude modulation is superimposed on the filtered 
wave group. Notice the excellent fit. The phase modulation is defined with the initial 
carrier trend removed and has been unwrapped. The unwrapping technique looks for 
and removes discontinuities of 2x. These arise from using the principal value of the 
arctangcnt to determine the continuous phasc modulation. 

Thcrc is very little phase variation within the group. Most of the phase variation 
occurs outside the group where the amplitude is nearly zero. Discontinuities (or 
jumps) in the frequency modulation occur where there are local reversals in phase. 
Again. there is little variation within the initial group; a small amount develops with 
fetch. Most of the jumps in frequcncy (hence reversals in phase) occur where there 
are local amplitude minima. Where jumps do occur within the wave group, they tend 
to occur where there is a minimum in amplitude modulation (figures 2b-h). 

In  the observation time series at 30.5 m (figure 2b)  we see a reversal in phase and 
a jump in frequency modulation occurring a t  53.7 s. Figure 2 (c) amplifies this phase 
revcrsal. The magnitude of the phase change is approximately 2 rad, and i t  occurs 
at a local amplitude minimum. Notice that the modulation envelope is greater than 
zero. 

Figure 2 (f) is an example of a phase reversal occurring later in the evolution, this 
time at 106.7 m. In the time series of figure 2 (f) we see a reversal in phase and a jump 
in frequency occurring at 52.4 s. Figure 2 (9)  shows the magnitude of the jump to be 
approximately 2.3 rad. The amplitude modulation goes to  zero. This looks very much 
like a ‘ crcst-pairing ’ event in which crests merge and the frequency downshifts. 

These jumps are an important and consistent feature of the observations. Their 
frequency of occurrence within wave groups increases with wave steepness and with 
wave-group evolution. They have also been observed in continuous wavetrains. 

3.3. Discussion 
Melville (1983) has observed these jumps in a study that examined the evolution to  
breaking of nonlinear surface gravity wavetrains. He computes an instantaneous 
phase speed, the ratio of measured frequency to wavenumber modulation, and finds 
small regions of very rapid, large-amplitude variations in phase speed corresponding 
to the phase reversals. The large gradients or jumps that he observes in the frequency, 
wavenumber and phase speed always occurred in the neighbourhood of local minima 
in wave amplitude. Melville suggests that these jumps may be the mechanism of ‘crest 
pairing ’ (one crest overtakes another and disappears) observed by Ramamonjiarisoa 
& Mollo-Christensen (1979; and Mollo-Christensen & Ramamonjiarisoa 1982) and the 
‘loss of crests’ observed by Lake & Yuen (1978). Crest pairing may be the visual 
manifestation of the frequency downshift. These local large phase-speed variations 
in the vicinity of amplitude minima may act to merge crests or troughs (local 
instability) and to  decrease the frequency. 

The spectral evolution gives us information regarding the amplitude but not the 
phase modulation. Ramamonjiarisoa & Mollo-Christensen (1979) have shown that a 
phase shift between amplitude and phasc modulation results in an asymmetry in the 
spectrum (as in the asymmetry of the sidebands). Melville (1983) has observed an 
evolving phase shift between amplitude and frequency modulations in a continuous 
wavctrain. Initially, he finds no phase lag between amplitude and phase. The shift 
increases with evolution such that phase leads the amplitude modulation by ix. The 
modulations evolve from symmetric sinusoidal variations to increasingly asymmetric 
variations with steep forward faces and more gradually sloping rear faces. When the 
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amplitude is strongly modulated (extending to nearly zero), large jumps in frequency 
occur corresponding to small sudden reversals in phase. 

An evolving asymmetry of the phase and amplitude modulations implies that the 
instantaneous nonlinear phase speed also exhibits asymmetry. In addition, if the 
phase modulation propagates at a different speed than the amplitude modulation 
(evolving phase shift), then these small regions of anomalously large phase-speed 
variation are propagating through the group. These narrow regions involving a large 
jump in phase speed, with larger phase speed overtaking slower, may result in local 
instability which acts to merge crests (crest pairing) and lower the frequency. 
Dispersion of the groups with lower frequency may then achieve the observed sorting 
into a succession of envelope solitons. In continuous wavetrains there would be no 
sorting but rather a propagating modulation. 

4. Model 
We model the wave-group observations using the cubic nonlinear Schrodinger 

(NLS) equation. Zakharov (1968) was the first to derive the two-dimensional cubic 
NLS equation in the context of deep-water waves. It describes the evolution of the 
slowly varying complex modulation envelope of gravity waves on deep water. It has 
been derived and solved by a number of different methods (e.g. Chu & Mei 1970,1971 ; 
Zakharov & Shabat 1972; Yuen & Lake 1975). For a recent review of this equation 
and its solutions see Peregrine (1983). Our use of this model differs in two respects 
from that of previous work: we specify the phase as well as the amplitude from 
observations and compare the subsequent evolution, and we make these comparisons 
over a long time with both damped and undamped numerical solutions. 

We solve the NLS equation using a modified Crank-Nicholson implicit scheme with 
second-order centred spatial finite-differencing. The scheme and computer code were 
taken from Yue (1980). 

The free-surface deflection 1’ is represented as the real part of the product of a 
complex modulation envelope A‘ and a rapidly varying carrier wave with wave- 
number k, and frequency w, (primes denote dimensional quantities) : 

(4.1) q’(x’, t’) = Re{A’(s’, t’) exp [i(k, x’-w0 t ’ ) ] } .  

We non-dimensionalize as follows : 
kA’ 

X = sk, ( x’-- Tl), T=szwot‘ ,  A = - ,  E 

where E = kl A’I is the wave steepness. The equation governing the complex 
modulation envelope can be shown to be (see e.g. Yuen & Lake 1975) 

This equation is valid to O(ee).  The theory assumes weak nonlinearity, narrow- 
bandedness (slow variations of frequency and wavenumber about their mean values 
which are small compared with amplitude variation) and inviscidness. 

iAT-&4xx-iIAIzA = 0. (4.3) 

The equation is solved subject to the boundary condition 

(AI+O aaX+co. (4.5) 
An infinity of conservation laws exists for the NLS equation. We compute our error 
at each time step by using the first law 

(4.6) 

12 FLM 161 
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The transformation from a spatial evolution in the wave-channel frame of reference 
to a temporal evolution in the numerical frame for both the initial condition and 
further comparison with observations was accomplished using linear group velocity. 
This transformation has been employed by Benjamin & Feir (1967), Chu & Mei (1970, 
1971), and Lake et al. (1977) to make comparisons between theory and experiment. 
From our comparisons we see that the observed groups propagate faster than linear 
theory predicts. 

5. Exact solutions 
Equation (4.3) has exact solutions, called solitons, which are progressive envelope 

pulses of permanent form. It also has similarity solutions for decaying oscillations 
(radiation) which decay like linear dispersion as T-1. 

In this section we discuss some previously studied solutions to the NLS equation. 
These known solutions are used to determine the characteristic phase evolution of 
radiation, soliton and bound state. These characteristic phase evolutions can then 
be used to classify both observations and numerical solutions. 

We examine spatially compact profiles of the form 

f ( X )  = sech (d2 X / s ) .  (5.1) 

Using the formula of Yuen & Lake (1975), we h d  the predicted number of solitons 
N ,  : 

N ,  = - j- lf(X) dX = s. (5.2) 

For integer values of s we get an exact number of solitons. For non-integer s we get 
solitons plus radiation. When s < 1 only radiation is present. The bound state of 
solitons is predicted when s 2 2, since f is real and symmetric (Satsuma & Yajima 
1974). 

5.1 . Radiation 
We consider an asymptotic state that contains no permanent soliton (s = f), and 
whose evolution is dominated by linear dispersion. If we write the complex variable 
A as 

A = R exp (inp). (5.3) 

We find that the asymptotic solution behaves like radiation with amplitude and phase 
modulation given by 

( 5 . 4 ~ )  

(5.4b) 

R ( X ,  T )  = A, T-1, 

p ( X , T )  =--[-+AilnT+q5,], 1 x2 
2n T 

where A,, q5, are not constants but are slowly varying functions of X / T .  
The full solution for initial condition (5.1) with s = !j is calculated for 

-7.5 < X < 7.5 and 0 < T < 10. The percentage error calculated from the first 
conservation law is 0.003 yo. 

Figures 3(a,b) show the amplitude and phase modulation at four times. The 
amplitude decays like T 3  (with only a small deviation from the asymptotic solution) 
for T > 5, and actually reaches the asymptotic state at T = 18. The initial phase 
modulation is zero. The offset between successive phases (figure 3b) is 30 rad. The 
initial group is centred at X = 0 in a frame that propagates at linear group velocity. 
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The centre value of the phase decreases with time and exhibits a smooth and 
symmetric spatial decay from the origin like -Xa. This is the principal characteristic 
of radiation as seen in the phase modulation. It represents the dispersion of 
wavenumber components in the moving reference frame. In amplitude modulation 
we see the centreline amplitude decrease whilst the off-centre amplitude increases 
initially as the group spreads (radiates). The first conservation law indicates that, for 
radiation, the envelope length increases linearly with time. 
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FIGURE 3. (a )  Evolution of the magnitude of the complex envelope A plotted at 4 successive time 
steps (time increases upwards) for the f-soliton solution. Amplitudes are offset by 1.5. (b)  Evolution 
of the phase corresponding to (a) .  Phases are offset by 30 rad. 
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5.2. Soliton 
The initial condition (5.1) with s = 1 yields an exact one-soliton solution. The 
evolution is calculated for - 7.5 < X < 7.5 and 0 < T < 10. The error is 0.001 %. The 
asymptotic solution is given by 

R ( X ,  T) = sech ( 4 2  X), 

p ( X ,  T )  = -TT/4n. 

( 5 . 5 ~ )  

(5.5b) 

Figures 4 (a, b) show the amplitude and phase modulation a t  various time steps. 
The amplitude modulation shows a steady permanent profile. The phase modulation 
shows a constant downward shift in time (successive phases are offset by 15 rad). 

5.3. Bound state 

The initial condition is that for the simplest bound state containing two interacting 
solitons and one recurrence frequency. We specify (5.1) with s = 2. The evolution is 
calculated for -7.5 < X < 7.5 and 0 < T < 30. The first recurrence takes place at 
T = 12.6 (figures 5a, b). 

FIGURE 4. (a) Evolution of the amplitude for a one-soliton solution. Offset is 1.5. 
( b )  Evolution of the phase corresponding to (a). Offset is 15 rad. 
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FIGURE 6. (a) Evolution of amplitude modulation for a $soliton solution. Offset is 1.5. 
( b )  Evolution of the phase corresponding to (a). Offset is 10 rad. 
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Figures 5(a,b) show the amplitude and phase modulations. From the initial 
condition the soliton evolves to a narrower pulse of twice the height with symmetric 
sidelobes (T = 6.3). Between the sidelobes and the central pulse we see nodes or zeros 
in amplitude. The initial phase is uniform and zero. The phases are offset by 5 rad. 
The phase modulates (T = 3.2) and then returns to uniform except for two 
discontinuities: a jump of A connects two sides of nearly constant phase. The jumps 
occur in X at the location of the amplitude nodes. In  the complex plane this means 
that A has constant phase angle and passes through the origin so that there is no 
discontinuity in derivative across the node. 

The phase modulates again (T = 9.8) as the solitons interact to reconstruct the 
initial condition at T = 12.6. The phase is again uniform, but with a small constant 
phase shift as in the evolution of a one-soliton solution. The oscillation is seen to go 
back and forth between the two endstates: the initial condition and the narrower, 
steeper pulse with sidelobes (the minimum and maximum in amplitude modula- 
tion, respectively). At each of these two endstates the phase is nearly uniform, 
with the exception of discontinuities in phase at the nodes of A. The intermediary 
stages (growing and decaying modulation) between these two endstates also recur 
(T = 3.2, 9.8, 15.8). 

5.4. Bound state plus radiation 

We specify (5.1) with s = !j. The solution is calculated for -7.5 < X < 7.5 and 
0 < T < 30. Figures 6 (a, b) show the amplitude and phase modulations at successive 
times. The evolution is best distinguished by the phase. The phases are offset by 10 
rad. We still see the jump of 7c at the node locations when T = 6.3. The background 
of linear dispersion is evidenced by the spread of the phase at T = 18.9. The bound- 
state interaction is characterized, as in the two-soliton solution, by an oscillation 
between two endstates of maximum and minimum amplitude modulation. The phase 
is nearly uniform at the extremes of amplitude modulation (T = 0, 6.3, 23) and is 
modulated during the transitions (T = 3.2, 18.9, 30). 

5.5. Divergent solitons 
For our final example we examine the case of divergent solitons for an initial condition 
of the form 

f ( X )  = sech [;(1/2 X-0.6)] - sech [4(1/2 X+O.6)]. (5.6) 

This case was first examined numerically by Satsuma & Yajima (1974) and is shown 
in figure 5 of their paper. The initial condition is antisymmetric and yields two 
divergent solitons of equal amplitude and equal but opposite velocities. Figures 7 (a, 13) 
show amplitude and phase modulations at successive times. Phases are offset by 
20 rad. The phase evolution shows two uniform regions of phase corresponding to the 
two pulses, with a jump of 7c connecting the two regions where the amplitude node 
occurs. The solitons do not interact, as is proved by the amplitude modulation, which 
is fairly steady, and by the lack of phase modulation. The phase remains uniform 
in each of the two regions, with slight constant shifts at successive times as in the 
one-soliton solution. 

5.6. Summary of phase-modulation characteristics 
The soliton evolution is characterized by a locally uniform phase (p, = p,, = 0) with 
small constant shifts in time. The bound-state evolution is characterized by a locally 
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uniform phase (px = 0) at times of minimum and maximum amplitude modulation. 
Undulations in phase occur during the growth and decay of modulation. Radiation 
is characterized by a negative curvature in the phase (pxx < 0). 

6. Comparison with observations 
We compare amplitude and phase modulations of the observations at fixed fetches 

to the numerical solutions at times corresponding to those fetches. The modulations 
were non-dimensionalized using the scaling given in (4.2), where w,, k, and maximum 
A are those measured from the initial condition at 6.1 m. The carrier frequency was 
removed. The segment of time series at  further fetches was chosen by propagating 
the initial observation down the channel at the linear group velocity. The NLS 
evolution is in a frame moving at linear group velocity. From such a comparison we 
observe that the groups travel faster than linear theory predicts. 

The numerical solutions have more points than the Hilbert-transform length. 
Hence the beginning and end of the observations are padded by the same constant 
value that matches to the start of the group, with ends tapered to zero. The time 
interval for evolution is chosen to correspond to the length of evolution in the wave 
channel (scaled by group velocity and steepness). 

The comparisons at each fetch are not exact. First, there is an error introduced 
in using the linear group velocity. Secondly, the time chosen is taken to be the closest 
grid point to the exact time calculated using linear group velocity. What we hope 
to illustrate here is the overall character of the phase evolution based on insight gained 
from the exact solutions. From amplitude modulation we can estimate the timescale 
on which dissipation becomes important. The effect of dissipation can also be seen 
in the change in character of the phase evolution between damped and undamped 
numerical results. 

To model the effects of dissipation, (4.3) was modified to the form 

iA,-+Ax,-iIA12A = -iiaA. (6.1) 

The coefficient a was estimated from observations as in Chu & Mei (1971). The values 
of a are listed in table 1. The method for estimating a is found in Appendix B. 

6.1. Radiation 
We calculate the evolution of a group of ten waves of small wave steepness (ak = 0.03, 
f, = 0.80 Hz, fi = 0.80 Hz) for I XI < 9.0 and 0 < T < 2.5. The group evolution is 
dominated by linear dispersion. The lengthening of the group is linear in T. 

A comparison of the amplitude modulations (figures 8a-c)  shows that the observed 
group is strongly attenuated. The comparison between observations (figure 8a)  and 
the undamped model (figure 8b) is quite good at 15.2 m and 30.5 m (not shown). (Note 
that the numerical solutions are labelled by fetch ; actually they are the times of the 
solution that correspond to those fetches.) The effect of the damping becomes 
somewhat evident at 45.7 m, and more markedly in the subsequent evolution. The 
inclusion of a constant modulus of decay (figure 8c), estimated from the observations, 
gives good agreement for the entire evolution (137.2 m). There is no suggestion of 
soliton behaviour in the amplitude modulation, nor is any predicted for this initial 
group using (5.2). 

The initial phase is basically constant (px = p,, = 0) within the group. The 
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FIGURE 8. Amplitude modulations for the evolution of a group of 10 waves, initial steepness 
ak = 0.03. Offset is 1.5. (a) Observations, non-dimensionalized at each fetch by the initial- 
condition scaling. ( b )  Undamped NLS solutions at times corresponding to the fetches in (a). 
(c) Damped NLS solution at times corresponding to the fetches in (a). 

phase modulations for the observations (figure 9a) and for both numerical solutions 
(figures 9b,c) agree, both in general character and, a t  early fetches (time steps), in 
detail. The phases are shown stacked with an offset of 35 rad. 

The phase evolves from initial uniformity (6.1 m) imposed by the wavemaker to 
a state characteristic of radiation (pxx < 0). The evolution thus seems to consist of 
an initial forced pulse that disperses linearly. The amplitude and phase of observations 
clearly show that the group has components moving at a rate faster than the linear 
group velocity based on the initial carrier frequency. 
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FIQURE 9. Phase modulations corresponding to figure 8. Ph-es are shown stacked with an offset 
of 35 rad between successive phases. (a) Observations. (a) Undamped NLS solutions. (c) Damped 
NLS solutions. 
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FIQURE 10. Amplitude modulations for the evolution of a group of 25 waves, initial steepness 
ak = 0.10. Offset is 1.5. (a) Observations, nondimensionalized at each fetch by the initial- 
condition scaling. (b) Undamped NLS solutions at times corresponding to  the fetches in  (a). 
(c) Damped NLS solution at times corresponding t o  the fetches in (a). 

6.2. Bound state plus radiation 
An example of soliton-like behaviour is shown in figures 10 and 11 for a longer group 
of 25 waves with initial steepness ak = 0.10, f,, = 0.96 Hz and fi = 0.94 Hz. The 
predicted number of solitons is 2.3. 

The amplitude modulations are plotted in figures 10 (a-c) .  The observations 
(figure 10a) and the damped solution (figure 1Oc) agree very well. Damping 
becomes important at 76.2 m, seen by comparison with the undamped solution. 

The phase modulations are shown in figures 11 (a-c) .  The offset between successive 
phases is 35 rad. The observations (figure 11 a )  show the phase evolution characteristic 
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FIGURE 11. Phase modulations corresponding to  figure 10. Phases are shown stacked with a n  offset 
of 35 rad between successive phases. (a) Observations. (b) Undamped NLS solutions. (c) Damped 
NLS solutions. 
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FIGURE 12. Amplitude modulations for the evolution of a group of 25 waves, initial steepness 
ak = 0.16. Offset is 1.5. (a) Observations, nondimensionalized at each fetch by the initial- 
condition scaling. (6) Undamped NLS solutions a t  times corresponding to the fetches in (a). 
(e) Damped NLS solution a t  times corresponding to the fetches in (a). 

of a soliton. The phase is basically uniform (p, = p,, = 0) with small shifts at 
successive fetches. There are small undulations in the phase. The initial jump in phase 
occurs at the ends of the group where there are amplitude nodes. At the edges of the 
group we see radiation (p,, < 0). The undamped phase evolution (figure l l b ) ,  as 
in the last example, is initially uniform (p, = pxx = 0) like a soliton or bound state. 
Beginning a t  76.2 m, where dissipation is first noticeable, rather than remain uniform 
as do the observations and the damped numerical solution, the undamped solution 
modulates (figure 11 b). Particularly at 137.2 m, the phase modulation resembles the 
%-soliton solution at T = 18.9 (figure 6b). The phase is like that of the bound soliton 
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FIGURE 13. Phase modulations corresponding to figure 12. Phases are shown stacked with an offset 
of 52.5 rad between successive phases. (a) Observations. ( b )  Undamped NLS solutions. (c) Damped 
NLS solutions. 



362 T. K .  Chereskin and E .  Mollo-Christensen 

as it  approaches a maximum modulation. The jumps in phase occur within the group 
at amplitude minima or nodes. 

The last example we discuss is that  of the longest (25 waves) steepest wave group 
(ak = 0.16, fo = 1.21 Hz and fi = 1.01 Hz). Figures 12 and 13 compare the modu- 
lations. The predicted number of solitons was 5.2; the observed number was 4. 

Amplitude modulations (figures 12 n-c) show reasonable agreement between ob- 
servations and the damped NLS solution. The phase modulations are shown in 
figures 13 (a-c) .  The offset between successive phases is 52.5 rad. Notice in figure 13 (a )  
the marked negative curvature a t  15.2 m at the front of the group, corresponding to 
leading low-frequency dispersion. Within the group a t  15.2 m the phase has remained 
very flat. At 45.7 m we see the small local phase reversals occurring near amplitude 
minima. The small undulations in phase are characteristic of growing and decaying 
modulation. The phase is much more uniform again at 137.2 m. (Between - 12 and 
-4 non-dimensional distance we see a jump of 2n: and 4n: missed by the unwrapping 
technique - continuous phases shown here are all ‘unwrapped’ from principal values 
of the arctangent function). There is a background of radiation. The numerical 
solutions (figures 13b-c) also exhibit the bound-state characteristics., 

Although the bound-state phase modulation cannot be distinguished from bound 
state plus radiation, it is different from pure radiation and simple soliton behaviour. 
What we observe is characteristic of an ongoing interaction of some kind, which in 
amplitude is shown by growing and decaying modulation. The phase is further 
evidence that i t  is indeed an interaction and not linear dispersion by its relative 
flatness bXx = 0) within the group with small reversals located a t  amplitude minima. 
The phase also seems distinguishable from that of divergent solitons in that the 
reversals change in time, generally corresponding to locations of nodes, rather than 
staying fixed in relative position in the group. 

7. Conclusions 
We have made comparisons between observations and numerical solutions of 

narrow-banded wave-group evolution. From these comparisons, using the long-time 
behaviour of exact asymptotic solutions as a guide, we believe that we can distinguish 
between radiation (linear dispersion) and soliton-like behaviour based on character- 
istics of the phase modulation. This does not appear to  have been analysed before 
in observations. We suggest that, a t  least for wave groups with a well-defined carrier 
frequency, the phase modulation may give a clearer indication of the type of wave 
interaction that takes place. 

Owing to dissipation, it seems that recurrence does not take place. However, in 
contrast with predictions of the linear theory for the thermalization of the group, the 
wave groups do remain coherent throughou t their development. The phase modulation 
indicates that the waves remain together and interact in the long-time evolution. 

We find that the damped NLS equation models the long-time evolution surprisingly 
well in view of the weak nonlinearity of the theory and the crudeness of the dissipation 
term. Although the form of the dissipation does not directly affect the phase, we find 
there is an indirect effect on the phase in the long-time evolution by a change in the 
‘ quantum’ or number of observed groups. 

Although the NLS model seems to describe the global character of the amplitude 
and phase modulation, we observe jumps in the frequency modulation and reversals 
in phase which are not described by weakly nonlinear theory. It, is suggested that 
these jumps are related to the mechanism of frequency downshifting. It is also 
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observed that the groups propagate faster than linear theory predicts, probably 
because of both nonlinear effects and the downshift in frequency. In a statistical 
sense the jumps are rare, yet they are dynamically significant since their effect is 
irreversible and cumulative. 

The experiments were made in the outdoor flood plain at  Bay St Louis, Mississippi, 
with the cooperation of Dr M.-Y. Su of NORDA. P. Marler and R. Myrick helped with 
the experiments. We thank K. Melville and C. C. Mei for useful suggestions, and 
G. Sahar for generously providing his software. Comments from reviewers made 
substantial improvements on the original manuscript. T. K. C. acknowledges the 
support of a grant from the U.K. Natural Environment Research Council while 
this paper was written. The research was sponsored by ONR under contract 
NO00 14-80-C-0273. 

Appendix A. Hilbert transform 

is referred to his paper and to Sahar (1981). 
We follow the discussion in Melville (1983). For further detail the interested reader 

If g ( t )  is a real function of time, - CXI < t < co , then we define the analytic function 

h(t)  = g ( t )  - iO(t), (A 1) 

where 
1 g(t’)dt’ 

~ 

7r t - t ’  d ( t )  = HT [g(t ) ]  = - 

(HT [ ] denotes the Hilbert transform of [ I). 
If we represent our real measured time series g(t )  as a Fourier series 

m 

n-o 
s(t )  = ~e { a n  exp [ i ~ n ~ }  2 

where an and 9, are respectively the amplitude and phase of the nth Fourier 
component, then by the properties of the Hilbert transform 

HT [ g ( t ) l =  - Im { a n  exp [i9,1}. 
n-o 

In general, if our data are given as 

g ( t )  = Re W )  exp [i9(t)I> 

then we define the analytic function h(t) : 

h(t) ZE g(t)-id(t) = a(t) exp[i$(t)]. 

The amplitude a(t) is given by 

and the phase #(t) is given by 

a(t)  = [g2 + 9 9 ,  

Q ( t )  = arctan [ -g?/g]. 

If we think of our analytic function as the product of a rapidly varying carrier wave 

(A 9) 

and a slowly varying modulation, 

h(t)  = a(t) exp [i#(t)] = a(t) exp {i[O(t) + wo t]}, 
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A( t )  = a(t) exp [iB(t)], (A 10) 

where a is defined as the amplitude modulation and B is defined as the phase 
modulation. 

The phase modulation B is given by 

0 = q5-wot = arctan [ -+,t. (A 11) 

However, the phase modulation is a continuous function of time, whereas the 
arctangent is restricted to the interval [-in, 2x1. Instead of using the arctangent, we 
actually solve for the cosine and sine of #, which extends our interval to [ -x, R ] .  The 
phase is unwrapped by looking for and removing discontinuities of 2 ~ .  

Use of this transform method implies a weakly narrow-banded assumption. The 
bandwidth of the spectrum is required to be less than or equal to 2w,. 

Appendix B. Dissipation 
The wave-amplitude decay coefficient a is determined following the approach 

outlined in Chu & Mei (1971). First we define a wave-packet energy 

where a(x,t) is the wave amplitude expressed as a function of location x and 
time t .  A damping coefficient u for the packet energy is estimated from the energy 
equation 

{ + c,, &} a2 = - ua2, 

where Cgo is the linear group velocity. Integrating first with respect to t and then with 
respect to x (from our initial observation at  5,) yields 

where E, is the packet energy a t  5,. In obtaining (B 3) we have used the property 
that a(x,  fa) = 0 at a fixed location x for a finite wave group. We find that the 
packet energy decays as u/C,,. We determine the amplitude decay Coefficient to be 

a = u/2Cg,. (B 4) 

The estimate of a is made from a linear regression of In (Ep /E , )  versus x- 2,. The 
values for each experiment are listed in table 1. 

For the numerical evolutions the decay coefficient was converted from the space 
domain to the time domain using linear group velocity, i.e. +T was used. The 
dissipation was non-dimensionalized according to (4.2) by e2wo. 
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